

5. *a*, *b*, *c*, *d* are the units digits of four natural numbers each of which has four digits. The tens digit of these four numbers are the 9 complements of the units digit. The hundreds digits are the 18 complements of the sum of their respective tens and units digits. The thousands digits are the 27 complements of the sum of their respective hundreds, tens and units digits. If a + b + c + d = 10, find the sum of these four numbers. {9 complement of a number 4x is 9 - x, 18 complement of a number z is 27 - z}.

6. A sequence is generated starting with the first term t_1 as a four digit natural number. The second third and fourth terns (t_2 t_3 and t_4) are got by squaring the sum of the digits of the preceding terms. (Ex. t_1 = 9999 then

 $t_2 = (9 + 9 + 9 + 9)^2 = 36^2 = 1296,$

 $t_3(1+2+9+6)^2 = 324,$

 $t_4 = (3 + 2 + 4)^2 = 81).$

Start with $t_1 = 2012$. Form the sequence and find the sum of the first 2012 terms.

7. Find the two digit numbers that are divisible by the sum of their digits. Give detailed solution with logical arguments. 8. ABCD is a square and the sides are extended as shown in the diagram. The exterior angles are bisected and the bisectors extended to from a quadrilateral *PQRS*. Prove that *PQRS* is a square.

Winners are not people who never fail, but people who never quit

1. Pustak Keeda of standard six bought a book. On the first day he read one fifth of the number of pages of the book plus 12 pages. On the second day he read one fourth of the remaining pages plus 15 pages and on the third day he read one third of the remaining pages plus 20 pages. The fourth day which is the final day he read the remaining 60 pages of the book and completed reading. Find the total number of pages in the book and the number of pages read on each day.

2. In the adjoining figure $\triangle ABC \angle A$ is equal to an angle of an equilateral triangle.

DEF is parallel to *AB* and *AE* parallel to *BC* $\angle CEF = 170^{\circ}$ and $\angle ACE = \angle B + 10^{\circ}$. Find the angles of the triangle ABC and $\angle CAE$

3. $p = 1 + 2^1 + 2^2 + 2^3 + \dots + 2^n$ where *p* is a prime number and n is a natural number. Find all such prime numbers p < 100 and the corresponding natural number *n*. For each (*p*, *n*) find $N = p x 2^n$ and find the sum of all divisors of *N*.

4. The sequence 8,24,48,80,120, ---- consists of positive multiples of 8, each of which is one less than a perfect square. Find the 2011th term. Divide it by 2012 and find the quotient.

5. Each letter of the following words is a positive integer. The letters have the same value wherever they occur. The numerical values given for each word is the product of the corresponding numbers of the letters appearing in the word.

BILL =35, BLAB = 225, BLANK - 270, SLANG = 2574

Find the value of SINKING.

[Ex: If P=12, U=2, T==5 then PUT - 120].

6. (a) The length of the sides of a triangle are three consecutive odd numbers. The shortest side is 20%

of the perimeter. What percentage of the perimeter is the largest side?

(b) The-sides of the triangle are three consecutive even numbers and the biggest side is $44\frac{4}{9}$ % of the perimeter. What percentage of the perimeter is

the shortest side?

7. In the figure all the 14 rectangles are equal in size. The dimensions of each rectangle are 2 unit x5 units. *P* is a point on *ED*.

AP divides the octagon *ABCDEFGH* into two equal parts. Find the length of *AP* (Hint: Area of a triangle

In rectangle *ABCD*, the length is twice the breadth. In the square each side is equal to one unit more than the breadth of the rectangle. In the triangle *LMN*, the altitude is one unit less than the breadth of the rectangle. Area of the rectangle is 18 square units. The sum of the areas of the rectangle and the square is equal to the area of the triangle. What is the base of the triangle and the areas of the square and the triangle.

- 11. Consider the sequence $\frac{3}{5}, \frac{6}{7}, 1, 1\frac{1}{11}, \dots$ The 2016 th term of this sequence is $\frac{p}{q}$ where p, q are integers having no common factors, the value of q p is ______
- 12. The number of 3 digit numbers that contain 7 as at least one of the digits is —
- 13. Mahadevan conducted a problem solving session for a group of 18 primary class students. Seeing the graded performance, he distributed packets of biscuits to all the students. The first student got 1 packet plus $\frac{9}{19}$ of 1 packet.

The second student got 2 packets plus $\frac{9}{19}$ of 2 packets.

- The third student got 3 packets plus $\frac{9}{19}$ of 3 packets and so an. The total number of packets of biscuits distributed by Mahadeven is -
- 14. Using the digits of the number 2016, two digit numbers of different digits are formed. The sum of all these numbers is ———
- 15. The least multiple of 7, that leaves a remainder 4 when divided by 6, 9, 15 and 18 is —
- 16. The number of revolutions that a wheel of diameter $\frac{\ell}{11}$ meter will make in going 8 kilometers on a level road is ———
- 17. The radius of a circle is increased so that its circumference increases by 5%. The area of the circle will increase (in %) by ———
- 18. The sum of seven numbers is 235. The average of the first three is 23 and that of the last three is 42. The fourth number is ———
- 19. The number of $\frac{1}{6}$ that are in $116\frac{2}{3}$ is —
- 20. In the figure below, AB is parallel to CD and EF is parallel to GH. The value of $x^{\circ} y^{\circ}$ is ______

If you're chasing a dream, don't waste a moment. Every second of practice makes a difference.